

O-level

The mole

A mole of a substance is the mass in grams of the substance which is numerically equal to its relative atomic mass or its relative molecular mass.

E.g. One mole of carbon weights 12g, 1 mole of oxygen molecule weights 32g. 1 mole of the compound ammonium sulphate weights 132g.

- A mole of any substance contains the same number of particles. These particles can be molecules, a toms, ions or electrons.

A mole of any substance contains 6.02×10^{23} particles. These number of particles in any mole of a substance (6.02 x 10^{23}) is called **AVOGADRO'S NUMBER**

There are 6.02×10^{23} carbon atoms in 1 mol (12g) of carbon. There are 6.02×10^{23} oxygen molecules in 1 mol (32g) of oxygen. There are 6.02×10^{23} formula units of ammonium sulphate in 1 mol (132g) of ammonium sulphate.

Example 1

Taking Avogadro's constant equal to 6×10^{23} How many Cu atoms are there in a copper plate, weighing 48g [Cu = 64] Solution:

Let the number of moles of Cu that are in 48g be X 1 mole of Cu contain 64g X moles of Cu contain 48g $\therefore X = \frac{1 \times 48}{64}$ = 0.75 moles But 1 mole of Cu contain 6×10^3 atoms $\therefore 0.75$ moles of Cu contain [$\frac{6 \times 10^{23} \times 0.75}{1}$] atoms $= 4.5 \times 10^{23}$ atoms

Example 2 How many grams of Ag [Ag = 108] contain 1. 2 x 10^{23} atoms

Solution:

Let the number of moles in 1.2×10^{23} atoms be X 1 mole of Ag contain 6×10^{23} atoms X moles of Ag contain 1.2×10^{23} atoms $\therefore \frac{1.2 \times 10^{23} \times 1}{6 \times 10^{23}}$ = 0.2 moles But 1 mole of Ag contain 108g

 \therefore 0.2 moles of Ag contain [108 x 0.2] g

Example 3

How many C atoms are there in a carbon rod weighing 8 g (C = 12) Solution 12g of carbon contains 6×10^{23} atoms \therefore 8g of carbon contain $\frac{8 \times 6 \times 10^{23}}{12} = 4 \times 10^{23}$ atoms

Example 4

How many grams of copper (Cu = 64) contain 4.5 x 10^{23} atoms? Solution 6×10^{23} atoms of copper weigh 64g $\therefore 4.5 \times 10^{23}$ atoms contain $\frac{4.5 \times 10^{23} \times 64}{6 \times 10^{23}} = 48g$

Equations

If we consider the following equation:

 $C + O_2 \rightarrow CO_2$

The equation now may mean

- a. 1 atom of carbon reacts with 1 molecule of oxygen to yield 1 molecule of carbon dioxide.
- b. 12g of carbon react with 32g of oxygen to yield 44g of carbon dioxide Or
- c. 1 mole of carbon atom react with 1 mole. of oxygen molecules to yield one mol of carbon dioxide molecules.

Similarly

 $2C + O_2 \rightarrow 2CO$

The equation means that

- a. 2 carbon atoms react with 1 oxygen molecule to yield 2 carbon monoxide
- b. 24g of carbon react with 32g of oxygen to yield 56g of carbon monoxide. or
- c. 2 mol of carbon atoms reacts with 1 mol of oxygen molecule to yield 2 mol of carbon monoxide molecules.

Example 5

What is the mass of

(a) 0.1 mole of CaSO4 R.F.M CaSO₄ = 40 + 32 + 4 X 16 = 136g \Rightarrow 1 mole weighs 136g \Rightarrow 0.1mole weigh 136 x 0.1 = 13.6g

(b) 3 moles of H₂O R.F.M H₂O = 18 $\Rightarrow 2 \times 1 + 16 = 18$ $1 \text{ mole of } H_2O \rightarrow 18$ 3 moles of $H_2O \rightarrow \underline{18 \times 3}$ $= \underline{54g}$

Example 7: According to the equation $2C + O_2 \rightarrow 2CO$

How many moles of carbon will react with 0.2mol of oxygen?

Solution

From the equation
2 mol of C reacted with 1 mol of O₂
=> 1 mole of O₂ requires 2 moles of C
∴ 0.2 moles of O₂ requires 2 x 02 = 0.4 moles of C

Example 8:

According to the equation

 $C_3H_8 + 50_2 \rightarrow 3CO_2 + 4H_2O$

(a) How many moles of CO_2 will be produced in the reaction of 3.2g of O_2 ?

Solution

Mass of 5 mole of oxygen molecules = 5 (2 x 16) = 160g \therefore 160g of oxygen produce 3 mole of carbon dioxide \Rightarrow 3.2g of oxygen produce $\frac{3 \times 3.2}{160} = 0.06$ moles

(b) How many grams of propane will react with 0.5 moles of O_2 ?

Solution

Formula mass of propane, $C_3H_8 = 12 \times 3 + 1 \times 8 = 44g$

5 moles of oxygen react with 1 mole of propane

 $\therefore 0.5$ moles of oxygen react with $\frac{1 \times 0.5}{5} = 0.1$ mole of propane

Calculation involving solutions

Definitions

1. The concentration of a solution is the number in gram or number of moles of the solute dissolved or contained in a known volume of solution.

Usually the concentration of a solution is expressed in either number of grams or moles of solute per litre of solution.

- 2. **Morality of a solution** is the number of moles of the solute contained in 1 litre, 1dm^3 or 1000cm^3 of the solution.
- 3. A two molar solution of sodium hydroxide (2M NaOH) is a solution containing two moles of the NaOH in 1000 cm^3 of the solution

4. Some formulas

Morality	=	Concentration in gm/L R.F.M	(units for morality mol dm ⁻³)
Or morality	=	<u>No. of moles x 1000</u> Volume	
Mole	=	<u>grams/mass</u> R.F.M	

Example 1

 20cm^3 of 0.1M NaOH completely reacted with 50cm^3 of dilute HCl. Calculate the Morality of the acid and concentration of the acid in g/l

Solution

Reacting equation

 $NaOH(aq) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l)$

Given: 20 cc 50cc 0.1M ?

Moles of NaOH that reacted:

1000cm³ of NaOH contained 0.1 moles 1 cm³ of NaOH will contain $\left(\frac{0.1}{1000}\right)$ moles

20cm³ of NaOH will contain $\left(\frac{0.1}{1000}x20\right)$ moles

= 0.002 moles of NaOH

Moles of HCl. that reacted From the equation mole ratio of NaOH: HCl 1 : 1

Therefore 1 mole of NaOH reacted with 1 mole of HCl

Therefore, moles of HCl = 0.002 moles

Morality of HCl 50 cm³ of HCl contained 0.002 moles 1 cm³ of HCl will contain $\left(\frac{0.002}{50}\right)$ moles 1000 cm³ of HCl will contain $\left(\frac{0.002}{50}x1000\right)$ moles = 0.04 M

Therefore, morality of HCl = 0.04 M

(b) formula mass HCl = 1+35.5 = 36.5

1 mole of HCl weighs 36.5g 0.04moles weigh 36.5 x $0.4 = \underline{1.46g/L}$

EXERCISE

1		The volume of 0.1M sodium hydroxide required to react exactly with 25.0cm3
		of 0.02M hydrochloric acid
	A.	12.5cm ³
	B.	25.0cm ³
	C.	50.0cm ³
	D.	75.0cm ³
2.		The mass of nitric acid required to make 200cm ³ of 2M solution is
	A.	31.5g
	B.	25.2g
	С.	15.8g
	D.	12.6g
3		The molarity of solution that contain 40g of sodium hydroxide in 500cm ³ is
		(Na = 23,
	A.	0.2M
	B.	0.5M
	C.	1M
	D.	2M
4		The volume of a 0.25M hydrochloric acid required to exactly react with 20cm ³
		of 0.1M sodium carbonate solution is given by
	A.	<u>20.0 x 0.1</u>
		2 x 0.25
	D	20.0 x 0.25
	D.	<u>2 x 0.1</u>
	С.	$\frac{2 x 20.0 x 0.25}{2}$
		0.1
	D	2 x 20.0 x 0 .1
	2.	0.25
-		
5		A 0.2M solution of X contains 18.25g of X per litre of solution. The relative $1 - 1$
		molecular mass of X is
	A.	18.25
	В.	30.3U
	U. D	43.03
	D.	91.25
0.		10cm of albasic was neutralised by 20cm ² of a 0.2M solution of sodium
	•	$\frac{1}{2 \times 10}$
	А.	$\frac{2x+10}{0.2x+20}$
	B.	<u>0.2 x 20</u>
		2 x 1
	C.	0.2 x 10
		<u>2 x 20</u>
		2 x 0 2 x 20
	D.	$\frac{2 \times 0.2 \times 20}{10}$
1		

7		$CaCO_3$ (s) heat $CaO(s) + CO_2(g)$
		The mass, in grams of calcium oxide formed when 20g of calcium carbonate
		completely decomposes is
		(Ca = 40, C = 12, O = 16)
	Δ	20 x 56
	11.	100
	В.	$\frac{20 \times 100}{20 \times 100}$
		56
	C	44 x 56
	U.	100
	D	<u>20 x 44</u>
0		
ð.		what mass, in grams, of sodium carbonate-10-water, Na_2CO_3 .10H ₂ O, is
		contained in SUCM [®] of a 0.1M solution?
	A.	<u>50</u>
		30
	B.	106 x 0.1 x 50
		1000
		207
	C.	$\frac{286 \times 0.1 \times 1000}{50}$
		50
	D.	106 x 0.1 x 50
	2.	1000
9		2.0g of sodium hydroxide was dissolved in water to make 500cm3 of solution
		is $(H = 1, O = 16, Na = 23)$
	Α.	2M B. 0.5M C. 0.1M D. 0.05M
10		Sulphuric acid react with sodium hydroxide according to equation
		$H_2SO_4(aq) + 2NaOH(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(l)$
		What volume of 0.5M sulphuric acid is required to react completely with
		10cm ³ of 2M sodium hydroxide
	A.	5 cm ³ B. 10 cm ³ C. 20 cm ³ D. 30 cm ³
11		What mass of sodium hydroxide is in 0.5litre of 2M sodium hydroxide
		solution
	A.	10g B. 20g C. 40g D. 0.8g
12		The volume of 0.2M sodium hydroxide solution which neutralise 25cm3 0.1M
		hydrochloric acid is
	A.	5cm ³ B. 12.5cm ³ C. 25cm ³ D. 50cm ³
13		Which one of the following contains the same number of atoms as 8g of
		sulphur?
	A.	20g of calcium
	B	10g of calcium
	C	12g of carbon
	D.	4 g of carbon
1	$\perp \nu$.	

14		What mass of sulphuric acid (Mr 98) in 5cm ³ of 0.2M sulphuric acid solution
	A.	<u>98 x 5</u>
		0.2 <i>x</i> 1000
	D	98 x 0 2 x 5
	В.	1000
	C.	<u>98 x 0.2</u>
		5 x 1000
	D	9.8 x 5 1000
	D.	0.2
15		25cm ³ of 0.05M sodium carbonate required 22.70cm ³ of hydrochloric acid for
		complete neuralization. Th mority of the acid given by
	Δ	0.00125 x 1000
	А.	2 x 22.7
	B.	0.00125×1000
		2 x 25
	C	0.00125 <i>x</i> 2 <i>x</i> 1000
		22.7
	D.	$\frac{0.00125 \ x \ 1000}{25}$
		25
16		25 cm^3 of a 0.25M on an acid 25 cm^3 of 0.5M sodium hydroxide solution for
		complete neutralization. The basicity of the acid is
	•	
	A.	I B. 2 C. 2 D. 4
17		Calcium reacts with hydrochloric acid according to the following equation
1,		$CaCO_2(s) + 2HCl(ag) \longrightarrow CaCl_2(ag) + H_2O(1) + CO_2(g)$
		The mass of carbon dioxide formed when $20g$ od calcium carbonate is
		completely reacted with hydrochloric acid is
		(Ca = 40, H = 1, Cl = 35.5, C = 12)
	A.	20 x 44 x 10
	В	$\frac{44 \times 100}{20}$
	G	20 x 100
	C.	44
	n	20 x 44
	D.	
18		Copper reacts with oxygen according to the following equation
		$2Cu(s) + O_2(g) \longrightarrow 2CuO(s)$
		Calculate the mass of copper (II) sulphate formed when 0.64g of copper
		powder is completely reacted with oxygen ($Cu = 64, O = 16$)
	A.	<u>0.64 x 80</u>
		96
	B.	<u>0.64 x 64</u>
		80

	C.	$\frac{0.64 \times 96}{80}$
	D.	0.64 x 80
	2.	64
19		Lead (II) nitrate reacts with potassium iodide according to the following equation $Pb(NO_3)_2$ (aq) + 2KI (aq) \longrightarrow $PbI_2(s) + 2KNO_3(aq)$ The mass pf lead (II) iodide formed when 33.2g of potassium iodide is reacted with excess lead (II) nitrate is (K= 39, I= 127, Pb = 207)
	А.	16 g B. 46.1g C. 66.4g D. 92.2g
20		The concentration in grams per litre, of a 0.05M sodium carbonate solution is $(Na = 23, C = 12, O = 16)$
	А.	0.05 x 83 B. 0.05 x 106 C. $\frac{106}{0.05}$ D $\frac{83}{0.05}$
21		Copper (II) oxide reacts with hydrogen according to the equation $CuO(s) + H_2(g) \longrightarrow Cu(s) + H_2O(l)$ The mass of copper formed when 8.0g of the oxide is reacted with excess hydrogen is (Cu = 63.5, O = 16, H = 1)
	А.	$63.5 \times 80 \times 8g \qquad B. \frac{63.5 \times 80}{8} \qquad C. \frac{8.0 \times 80}{62.5} \qquad D. \frac{63.5 \times 8.0}{80}$
22		Copper (II) sulphate reacts with sodium carbonate according to the following equation. $CuSO_4(aq) + Na_2CO_3(aq) \longrightarrow CuCO_3(s) + Na_2SO_4(aq)$ The mass of copper (II) carbonate formed when 200cm3 of a solution containing 5.3g of sodium carbonate per liter of solution was reacted completely with excess copper (II) sulphate is given by
	А.	$\frac{5.3 x 200 x 124}{106 x 1000} g \qquad \text{B.} \frac{5.2 x 124 x 1000}{106 x 200} g \text{C.} \frac{106 x 200 x 124}{5.3 x 1000} g \text{D.} \frac{106 x 124 x 100}{5.3 x 200} g$
23		15cm ³ of a dibasic acis was neutralised by 30cm ³ of a 0.4M potassium hydroxide solution. The morality of the acid is A. $\frac{2 x 15}{0.4 x 30}$ B. $\frac{0.4 x 30}{2 x 15}$ C. $\frac{15 x 0.4}{30 x 2}$ D. $\frac{2 x 0.4 30}{15}$
24		Aluminium reacts with copper II ions according to the following equation $3Cu^{2+}(aq) + 2Al(s) \longrightarrow 3Cu(s) + 2Al^{3+}(aq)$ Which of the following will be the mass of copper formed when copper (II) ions reacted with 2.5g of aluminium? (Al = 27, Cu = 63.5)
	А.	$\frac{2.5 x 2 x 63.5}{27 x 3} \qquad \text{B.} \frac{2.5 x 3 x 27}{63.5 x 2} \text{C.} \frac{2.5 x 2 x 27}{63.5 x 3} \qquad \text{D.} \frac{2.5 x 3 x 63.5}{27 x 2}$
25		20cm ³ of an acid HX was neutralised by 25cm ³ of a 0.05M sodium carbonate. Which of the following is the morality of the acid? A. $\frac{25 \times 05}{20}$ M B. $\frac{2 \times 25 \times 0.05}{20}$ M C. $\frac{2 \times 20 \times 0.05}{25}$ M D. $\frac{25 \times 0.05}{2 \times 2}$ M
26		Hydrochloric acid reacts with calcium hydrogen carbonate according to the following equation $Ca(HCO_3)_2 (aq) + 2HCl(aq) \longrightarrow CaCl_2(aq) + 2H_2O(1) + 2CO_2(g)$ 25cm ³ of a solution of calcium hydrogen carbonate required 8.0cm ³ of a .05M

		hydrochloric acid for complete neutralization. The concentration of the calcium
		hydrogen carbonate solution is $(C_2 = 40; O = 16, C = 12)$
		(Ca +0, 0 10, C 12)
		$A\left(\frac{8.0 \ x \ 0.05 \ x \ 162}{2 \ x \ 25}\right) g l^{-1}$
		B. $\left(\frac{8.0 \ x \ 0.05 \ x \ 162}{25}\right) g l^{-1}$
		C. $\left(\frac{25 \times 0.05 \times 162}{2 \times 8}\right) g l^{-1}$
		D. $\left(\frac{25 \ x \ 0.05 \ x \ 162}{8}\right) g l^{-1}$
27		Lead (II) nitrate reacts with potassium iodide according to the following equation $Pb(NO_3)_2$ (aq) + 2KI (aq) \longrightarrow $PbI_2(s) + 2KNO_3(aq)$ The mass pf lead (II) iodide formed when 33.2g of potassium iodide is reacted with excess lead (II) nitrate is (K= 39, I= 127, Pb = 207)
	А.	4.61g B. 9.22g C. 46.1g D. 92.2g
28		6.48 g of calcium hydrogen carbonate, $Ca(HCO_3)_2$ was dissolved in water to make 500cm ³ of solution. Which of the following is the morality of the solution? (H = 1; C = 12, O = 16, Ca = 40)
		A. 0.04M B. 0.06M C. 0.08M D. 0.12M
29		Which one of the following solutions contains the same number of moles of sodium ions as 200cm ³ of 0.5M NaHSO ₄ solution?
		A. $100 \text{ cm}_{2}^{3} \text{ of } 2\text{ M} \text{ Na}_{2}\text{CO}_{3}$
		B. 100 cm ³ of 0.5M NaNO ₃ C 250 cm^3 of 0.8M NaHCO
		D. $250 \text{cm}^3 0.4 \text{M} \text{ NaCl}$
30		10cm ³ of monobasic acid completely reacted with 20cm ³ of 0.05M sodium
		carbonate solution. The number of moles of the acid that reacted is $(20 \times 0.05 \times 2)$
		A. $\left(\frac{1000}{1000}\right)$ moles
		B. $\left(\frac{20 \times 0.05 \times 2}{10}\right)$ moles
		C. $\left(\frac{20 \times 0.05}{2 \times 1000}\right)$ moles
		D. $\left(\frac{0.05 x 2 x 10}{20 x 1000}\right)$ moles
31		Iron react with oxygen to form 0.8g of Iron (III) oxide is $[O = 16, Fe = 56]$
		A. $\left(\frac{0.8 \times 2 \times 56}{9}\right) q$
		$B \left(\frac{0.8 \times 2 \times 56}{0}\right) a$
		$\begin{array}{c} B. & \left(\frac{320}{320} \right) g \\ C & \left(\frac{0.8 \times 2}{320} \right) \end{array}$
		$\begin{array}{c} \text{L.} & \left(\frac{160 \times 56}{160 \times 56}\right) g \\ & \left(08 \times 56\right) \end{array}$
		D. $\left(\frac{3.3 \times 30}{320 \times 2}\right) g$

32		Nitric acid reacts with copper (II oxide according to the following equation
		$CuO(s) + 2HNO_3(aq) \longrightarrow Cu(NO_3)_2(aq) + H_2O(l)$
		0.5g of an impure copper (II) oxide reacted completely with 50cm ³ of a 0.1M
		nitric acid. The mass of copper (II) oxide in a sample is
		A. 0.20g B. 0.24g C. 0.30g D. 0.40g
33.		Magnesium burns in air according equation
		$2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$
		The mass of every required to hum $5a$ of magnesium completely is
		The mass of oxygen required to built 5g of magnesium completely is $[0 - 16] M_{\odot} = 241$
		[0 = 16; Mg = 24]
		A. $\frac{5 \times 16}{24}g$ B. $\frac{5 \times 16}{42}g$ C. $\frac{5 \times 52}{24}g$ D. $\frac{5 \times 52}{42}g$
34		5./3g of hydrated sodium carbonate, Na ₂ CO ₃ .10H ₂ O, was dissolved in water to
		make 500cm ³ of solution. The morality of solution is
		(Na = 23, O = 16, c = 12, H = 1)
		A. 0.05M B. 0.02M C. 0.04M D. 0.1M
35		Zinc carbonate decomposes according to the following equation when
		$ZnCO_2(s) \longrightarrow ZnO(s) + CO_2(g)$
		The mass of zinc oxide formed when 2 5g of zinc carbonate is heat is
		(7n - 65; 0 - 16; 0 - 12)
		(211 - 05, 0 - 10, 0 - 12)
		A = 0.41a $B = 0.81a$ $C = 1.62a$ $D = 2.24a$
		A. 0.41g B. 0.81g C. 1.62g D. 3.24g
36		A. 0.41gB. 0.81gC. 1.62gD. 3.24g25.0cm³ of a solution of 0.1M NaOH were exactly neutralised by 20.0cm³ of
36		A. 0.41gB. 0.81gC. 1.62gD. 3.24g25.0cm³ of a solution of 0.1M NaOH were exactly neutralised by 20.0cm³ of HCl. Calculate the concentration of the acid as
36	(a)	A. 0.41gB. 0.81gC. 1.62gD. 3.24g25.0cm³ of a solution of 0.1M NaOH were exactly neutralised by 20.0cm³ of HCl. Calculate the concentration of the acid asMolarity
36	(a) (b)	A. 0.41g B. 0.81g C. 1.62g D. 3.24g 25.0cm ³ of a solution of 0.1M NaOH were exactly neutralised by 20.0cm ³ of HCl. Calculate the concentration of the acid as Molarity in g/dm ³ Image: Concentration of the acid as Image: Concentration of the acid as
36	(a) (b)	A. 0.41gB. 0.81gC. 1.62gD. 3.24g25.0cm³ of a solution of 0.1M NaOH were exactly neutralised by 20.0cm³ of HCl. Calculate the concentration of the acid asMolarityin g/dm³In attrition 30cm³ of 0.4 M NaOH required 40cm³ of phosphoric acid, H ₃ PO ₄
36	(a) (b) (a)	A. 0.41gB. 0.81gC. 1.62gD. 3.24g25.0cm³ of a solution of 0.1M NaOH were exactly neutralised by 20.0cm³ of HCl. Calculate the concentration of the acid asMolarityin g/dm³In attrition 30cm³ of 0.4 M NaOH required 40cm³ of phosphoric acid, H ₃ PO ₄ How many moles of NaOH are present in 30cm³ of solution?
36	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ $25.0cm^3$ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ of HCl. Calculate the concentration of the acid asMolarityin g/dm^3In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H_3PO_4 How many moles of NaOH are present in $30cm^3$ of solution?Calculate the molarity of H_3PO_4 acid.
36	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ $25.0cm^3$ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ of HCl. Calculate the concentration of the acid asMolarityin g/dm^3In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H_3PO_4 How many moles of NaOH are present in $30cm^3$ of solution?Calculate the molarity of H_3PO_4 acid.
36 37 38.	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ $25.0cm^3$ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ of HCl. Calculate the concentration of the acid asMolarityin g/dm^3In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H_3PO_4 How many moles of NaOH are present in $30cm^3$ of solution?Calculate the molarity of H_3PO_4 acid.
36 37 38.	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ $25.0cm^3$ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ of HCl. Calculate the concentration of the acid asMolarityin g/dm^3In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H_3PO_4 How many moles of NaOH are present in $30cm^3$ of solution?Calculate the molarity of H_3PO_4 acid.In an experiment to determine the concentration of dilute sulphuric acid in moles per litre. $25 cm^3$ of 0.2 m NaOH solution required $24.6 cm^3$ of the acid
36 37 38.	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ $25.0cm^3$ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ of HCl. Calculate the concentration of the acid asMolarityin g/dm^3In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H_3PO_4 How many moles of NaOH are present in $30cm^3$ of solution?Calculate the molarity of H_3PO_4 acid.In an experiment to determine the concentration of dilute sulphuric acid in moles per litre, $25 cm^3$ of 0.2 m NaOH solution required $24.6 cm^3$ of the acid.Calculate the molarity of the acid
36 37 38.	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ $25.0cm^3$ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ of HCl. Calculate the concentration of the acid asMolarityin g/dm^3In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H_3PO_4 How many moles of NaOH are present in $30cm^3$ of solution?Calculate the molarity of H_3PO_4 acid.In an experiment to determine the concentration of dilute sulphuric acid in moles per litre, $25 cm^3$ of 0.2 m NaOH solution required $24.6 cm^3$ of the acid.Calculate the molarity of the acid. $20cm^3$ of solution carbonate solution reacted completely with $25cm^3$ of 0.2 M
36 37 38. 39	(a) (b) (a) (b)	A. 0.41gB. 0.81gC. 1.62gD. 3.24g25.0cm³ of a solution of 0.1M NaOH were exactly neutralised by 20.0cm³ of HCl. Calculate the concentration of the acid asMolarityin g/dm³In attrition 30cm³ of 0.4 M NaOH required 40cm³ of phosphoric acid, H ₃ PO4How many moles of NaOH are present in 30cm³ of solution?Calculate the molarity of H ₃ PO4 acid.In an experiment to determine the concentration of dilute sulphuric acid in moles per litre, 25 cm³ of 0.2 m NaOH solution required 24.6 cm³ of the acid.Calculate the molarity of the acid.20cm³ of sodium carbonate solution reacted completely with 25cm³ of 0.8Mby draghlaria acid according to the following actuation
36 37 38. 39	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ $25.0cm^3$ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ ofHC1.Calculate the concentration of the acid asMolarityin g/dm^3In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H_3PO_4 How many moles of NaOH are present in $30cm^3$ of solution?Calculate the molarity of H_3PO_4 acid.In an experiment to determine the concentration of dilute sulphuric acid in moles per litre, $25 cm^3$ of 0.2 m NaOH solution required $24.6 cm^3$ of the acid.Calculate the molarity of the acid. $20cm^3$ of sodium carbonate solution reacted completely with $25cm^3$ of $0.8M$ hydrochloric acid according to the following equation
36 37 38. 39	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ $25.0cm^3$ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ of HCl. Calculate the concentration of the acid asMolarityin g/dm^3In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H_3PO_4 How many moles of NaOH are present in $30cm^3$ of solution?Calculate the molarity of H_3PO_4 acid.In an experiment to determine the concentration of dilute sulphuric acid in moles per litre, $25 cm^3$ of 0.2 m NaOH solution required $24.6 cm^3$ of the acid.Calculate the molarity of the acid. $20cm^3$ of sodium carbonate solution reacted completely with $25cm^3$ of $0.8M$ hydrochloric acid according to the following equation Na ₂ CO ₃ (aq) + 2HCl (aq) \longrightarrow NaCl(aq) + CO ₂ (g) + H ₂ O(l)
36 37 38. 39	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ 25.0cm ³ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ of HCl. Calculate the concentration of the acid as Molarity in g/dm ³ In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H_3PO_4 How many moles of NaOH are present in $30cm^3$ of solution? Calculate the molarity of H_3PO_4 acid. In an experiment to determine the concentration of dilute sulphuric acid in moles per litre, 25 cm ³ of 0.2 m NaOH solution required 24.6 cm ³ of the acid. Calculate the molarity of the acid. $20cm^3$ of sodium carbonate solution reacted completely with $25cm^3$ of $0.8M$ hydrochloric acid according to the following equation Na ₂ CO ₃ (aq) + 2HCl (aq) \longrightarrow NaCl(aq) + CO ₂ (g) + H ₂ O(1) Calculate the concentration of the sodium carbonate in g/l.
36 37 38. 39 40	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ 25.0cm ³ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ of HCl. Calculate the concentration of the acid as Molarity in g/dm ³ In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H ₃ PO ₄ How many moles of NaOH are present in $30cm^3$ of solution? Calculate the molarity of H ₃ PO ₄ acid. In an experiment to determine the concentration of dilute sulphuric acid in moles per litre, $25 cm^3$ of 0.2 m NaOH solution required $24.6 cm^3$ of the acid. Calculate the molarity of the acid. $20cm^3$ of sodium carbonate solution reacted completely with $25cm^3$ of $0.8M$ hydrochloric acid according to the following equation Na ₂ CO ₃ (aq) + 2HCl (aq) \longrightarrow NaCl(aq) + CO ₂ (g) + H ₂ O(l) Calculate the concentration of the sodium carbonate in g/l. A sample of 0.106 g of pure sodium carbonate was dissolved in water to make
36 37 38. 39 40	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ 25.0cm ³ of a solution of 0.1M NaOH were exactly neutralised by 20.0cm ³ of HCl. Calculate the concentration of the acid as Molarity in g/dm ³ In attrition 30cm ³ of 0.4 M NaOH required 40cm ³ of phosphoric acid, H ₃ PO ₄ How many moles of NaOH are present in 30cm ³ of solution? Calculate the molarity of H ₃ PO ₄ acid. In an experiment to determine the concentration of dilute sulphuric acid in moles per litre, 25 cm ³ of 0.2 m NaOH solution required 24.6 cm ³ of the acid. Calculate the molarity of the acid. 20cm ³ of sodium carbonate solution reacted completely with 25cm ³ of 0.8M hydrochloric acid according to the following equation Na ₂ CO ₃ (aq) + 2HCl (aq) \longrightarrow NaCl(aq) + CO ₂ (g) + H ₂ O(1) Calculate the concentration of the sodium carbonate in g/1. A sample of 0.106 g of pure sodium carbonate was dissolved in water to make 100cm ³ of solution.
36 37 38. 39 40	(a) (b) (a) (b)	A. $0.41g$ B. $0.81g$ C. $1.62g$ D. $3.24g$ $25.0cm^3$ of a solution of $0.1M$ NaOH were exactly neutralised by $20.0cm^3$ of HCl. Calculate the concentration of the acid asMolarityin g/dm^3In attrition $30cm^3$ of 0.4 M NaOH required $40cm^3$ of phosphoric acid, H_3PO_4 How many moles of NaOH are present in $30cm^3$ of solution?Calculate the molarity of H_3PO_4 acid.In an experiment to determine the concentration of dilute sulphuric acid in moles per litre, $25 cm^3$ of 0.2 m NaOH solution required $24.6 cm^3$ of the acid. $20cm^3$ of sodium carbonate solution reacted completely with $25cm^3$ of $0.8M$ hydrochloric acid according to the following equation Na ₂ CO ₃ (aq) + 2HCl (aq) \longrightarrow NaCl(aq) + CO ₂ (g) + H ₂ O(l) Calculate the concentration of the sodium carbonate in g/l.A sample of 0.106 g of pure sodium carbonate was dissolved in water to make $100cm^3$ of solution.Calculate the mass of sodium carbonate needed to dissolve in one litre of water.

Ansı	ver	
		Working
1	С	Mole of hydrochloric acid
		1000cm ³ contains 0.02mole
		$\Rightarrow 25 \text{ cm}^3 \text{ contains} \frac{0.02 \times 25}{1000} = 0.005 \text{ moles}$
		Equation
		NaOH (aq) + HCl (aq) \longrightarrow NaCl(aq) + H ₂ O(l)
		Moles of NaOH
		From equation 1 mole of acid reacts with 1 mole of NaOH \rightarrow N h \rightarrow N h \rightarrow CHCh \rightarrow 0.005
		\Rightarrow Mole of NaUH = Moles of HCl = 0.005
		volume of sodium hydroxide solution 0.1 mode is constant of $1000 \text{ cm}^3 \text{ of } 0.1 \text{ M}$ as discuss bordenesside solution
		0.1 mole is contained in 1000cm ³ of 0.1M sodium hydroxide solution 0.005×1000
		$\therefore 0.005 \text{ moles are in } 1000000000000000000000000000000000000$
2	В	Mole of nitric acid in 200cm ³ of 2M nitric acid
_	_	1000cm ³ contain 2mole of nitric acid
		200 cm^3 contain $\frac{200 \times 2}{2} - 0.4 \text{ males}$
		$\frac{1000}{1000} = 0.4 \text{ Motes}$
		Formula mass of miric acid, $HNO_3 = 1 + 14 + 10 \times 3 = 0.5$
		$rac{1}{2}$ indicated is equivalent to $0.5g$
		~ 0.4 modes $\sim 0.4 \times 0.5$ g $\sim 2.5.2$ g
3	р	Formula mass of NaOH = $23 + 16 + 1 = 40$
5.	D	Moles of sodium hydroxide = $\frac{40}{10} = 1$ mole
		Morality of sodium hydroxide
		500cm ³ contain 1 mole
		1000 cm^3 contains $1000 \times 1 - 2M$
		$\frac{1}{500} = 2M$
4	D	\therefore molarity of a solution that contain 40g of sodium hydroxide in 500cm ² = 2M
4	D	1000cm ³ contains 0.1 molo
		$\rightarrow 20$ s x^2 s x^{-1} x^{-20} x^{-20} x^{-1}
		$\Rightarrow 20 \text{ cm}^3 \text{ contains} = 0.002 \text{moles}$
		Equation No CO $(ag) \pm 2HCl (ag) = 2NaCl(ag) \pm HO(l) \pm CO (g)$
		$Na_2CO_3(aq) + 2HCI(aq) = 2NaCI(aq) + H_2O(1) + CO_2(g)$
		Moles of HCl
		From equation 1 mole of Na ₂ CO ₃ reacts with 2 moles of HCl
		\Rightarrow Mole of HCl = 2 x Moles of Na ₂ CO ₃ = 0.002 x 2 = 0.004 moles
		Volume of HCl solution
		0.25moles are contained in 1000cm ³ of .25M HCl solution
		$\therefore 0.004 \text{ moles are in } \frac{0.004 \times 1000}{0.25} = 16 cm^3$
		0.20
5	D	0.2 moles of X weigh 18.25g
		1mole weigh $\frac{18.25 \times 1}{0.2} = 91.25g$
		\therefore formula mass of X = 91.25

6	В	Moles of sodium hydroxide
		1000cm ³ contains 0.02mole
		$\Rightarrow 20 \text{ cm}^3 \text{ contains} \frac{0.02 \times 20}{1000}$
		Equation
		$2\text{NaOH}(aq) + \text{H}_2\text{X}(aq) \longrightarrow \text{Na}_2\text{X}(aq) + \text{H}_2\text{O}(1)$
		Moles of acid
		$r = Mole of cid = \frac{1}{2} w mole of NaOH = \frac{1}{2} w \frac{0.02 \times 20}{2}$
		$\frac{1}{2} \text{ Mole of all } = \frac{1}{2} x \text{ mole of } \text{ NaOH} = \frac{1}{2} x \frac{1}{1000}$
		Molarity of the acid 10^{-3} 1^{-1} 0.02×20^{-3}
		$10 \text{ cm}^3 \text{ contain} - x - \frac{1000}{2}$
		$1000 \text{ cm}^3 \text{ contain} \frac{1}{2} x \frac{0.02 \times 20}{1000} x \frac{1000}{10} = \frac{0.02 \times 20}{2 \times 10} M$
7	A	Formula mass of $CaCO_3 = 40 + 12 + 16 \times 3 = 100g$
		Formula mass of $CaO = 40 + 16 = 56$
		$= 20 \text{ sof } C_2 C_2 \text{ methods}^{20 \times 56} \text{ sof } C_2 C_2$
	D	$\therefore 20g \text{ of } CaCO_3 \text{ produce} - \frac{g \text{ of } CaO}{100} = g \text{ of } CaO$
8	В	Formula mass of Na ₂ CO ₃ .10H ₂ O = $23 \times 2 + 12 + 16 \times 3 + 10(1 \times 2 + 16)$ = 286 a
		-200g Moles Na ₂ CO ₂ 10H ₂ O in 50cm ³ of 0.1M solution
		1000cm ³ contain 0.1 mole
		$50 \text{ cm}^3 \text{ contain } \frac{0.1 \times 50}{moles}$
		$Mass of NacCO2 10H2O equivalent to \frac{0.1 \times 50}{100} moles$
		$\frac{1}{1000}$
		$\frac{1}{10000000000000000000000000000000000$
	G	$\frac{1000}{1000}$ moles of Na ₂ CO ₃ .10H ₂ O weigh $\frac{1000}{1000}$ x286g
9	С	Formula mass of NaOH = $23 + 16 + 1 = 40$
		Moles of sodium hydroxide = $\frac{1}{40} = 0.05$ moles
		Molarity of sodium hydroxide
		300 cm contain 0.05mole
		$1000 \text{ cm}^3 \text{ contain} = 0.1 \text{ moles}$
10	C	\Rightarrow molarity of sodium hydroxide = 0.1M
10		1000cm ³ contains 2 moles
		$rac{10}{10}$ cm ³ contains ² ^{x 10} = 0.02 moles
		= 0.02 models
		Equation $2NaOH(ag) + H_2SO4(ag) \longrightarrow Na_2SO_4(ag) + 2H_2O(1)$
		Moles of H_2SO_4
		From equation 2 moles of NaOH reacts with 1 mole of H_2SO_4
		\Rightarrow Mole of H ₂ SO ₄ = $\frac{1}{2}$ x Moles of NaOH = $\frac{0.02}{2}$ = 0.01mole
		Volume of sulphuric acid solution
		0.5 Moles are contained in 1000cm ³
		$\therefore 0.01$ moles are in $\frac{0.01 \times 1000}{0.5} = 20 cm^3$
		0.5
11	С	Formula mass of NaOH = $23 + 16 + 1 = 40g$
		Mass of sodium hydroxide in 11 of 2M solution = $40 \times 2 = 80g$

		$\therefore 0.51 \operatorname{contain} \frac{0.5 \times 80}{1} = 40g$
12	В	Mole of hydrochloric acid 1000cm ³ contains 0.1mole $\Rightarrow 25 \text{ cm}^3 \text{ contains} \frac{0.1 \times 25}{1000} = 0.0025 \text{ moles}$ Equation NaOH (aq) + HCl (aq) \longrightarrow NaCl(aq) + H ₂ O(l) Moles of NaOH From equation 1 mole of acid reacts with 1 mole of NaOH \Rightarrow Mole of NaOH = Moles of HCl = 0.0025 Volume of sodium hydroxide solution 0.2 mole is contained in 1000cm ³ $\therefore 0.0025 \text{ moles are in } \frac{0.0025 \times 1000}{0.2} = 12.5 \text{ cm}^3$
13	В	Hint: Same number of moles of an element contain the same number of atoms $Mole = \frac{mass}{ralative atomic mas}$ Mole of sulphur in $8g = \frac{8}{32} = 0.25$ moles Moles calcium in $20g = \frac{20}{40} = 0.5$ moles Moles calcium in $10g = \frac{10}{4} = 0.25$ mole Therefore, 8g of sulphur contain the same number of atoms as 10g of calcium
14	В	Formula mass of $H_2SO_4 = 1 \ge 2 + 32 + 16 \ge 4 = 98g$ Mass of H_2SO_4 in 1000cm ³ of 0.2M solution = (98 \x 0.2)g $\therefore 5$ cm ³ contain $\frac{0.2 \ge 98 \ge 5}{1000}$ g
15	С	Mole of sodium carbonate 1000 cm^3 contains 0.05 mole $\Rightarrow 25 \text{ cm}^3$ contains $\frac{0.05 \times 25}{1000} = 0.00125 \text{ moles}$ Equation Na ₂ CO ₃ (aq) + 2HCl (aq) \longrightarrow 2NaCl(aq) + H ₂ O(l) + CO ₂ (g) Moles of HCl From equation 1 mole of Na ₂ CO ₃ reacts with 2 moles of HCl \Rightarrow Mole of HCl = 2 x Moles of Na ₂ CO ₃ = (0.00125 x 2) moles Molarity 22.7 cm ³ contain $0.00125 \times 2 \text{ mole}$ $\therefore 1000 \text{ cm}^3 \text{ contain} \frac{0.00125 \times 2 \times 1000}{22.7} \text{ M}$
16	C	Mole of acid = $\frac{25 \times 0.25}{1000}$ = 0.00625 moles Moles sodium hydroxide = $\frac{25 \times 0.5}{1000}$ = 0.0125 moles Basicity of acid = $\frac{moles \ of \ sodium \ hydroxide}{moles \ of \ the \ acid}$ = $\frac{0.0125}{0.00625}$ = 2

17	D	Formula mass of $CaCO_3 = 40 + 12 + 16 \times 3 = 100g$
		Formula mass of $CO_2 = 12 + 16 \ge 2 = 44g$
		100g of CaCO ₃ produce 44 g of CO ₂
		20 g of CaCO ₃ produce $\frac{44 \times 20}{100}$ g of CO ₂
18	D	(2×64) g of Cu produce $2(64 + 16)$ g of CuO
		$\Rightarrow 0.64g \text{ of Cu produce } \frac{0.64 \times 2 \times 80}{2 \times 64} = \frac{0.64 \times 80}{64}$
19	В	Formula mass of $KI = 39 + 127 = 166$
		Formula mass $PbI_2 = 207 + 127 x 2 = 461$
		166 x 2g of KI produce 461g of PbI ₂
		33.2g of KI produce $\frac{461 \times 33.2}{460 \times 10^{-2}} = 46.1g$ of PbI ₂
		- 166 X Z -
20	В	Formula mass of $Na_2CO_3 = 23 \times 2 + 12 + 16 \times 3 = 106$
		1mole weighs 106g
		0.05mole weigh 0.05 x 106
	-	$\therefore 0.05$ M sodium carbonate contains (0.05 x 106)g of Na ₂ CO ₃ per litre
21	D	Formula mass of copper oxide (CuO) = $64 + 16 = 80$
		80g of CuO form 63.5 g of Cu
		\therefore 8.0g will form $\frac{66.8 \times 600}{80}$
	D	
22	в	Formula mass of $CuCO_3 = 64 + 12 + 16 \times 3 = 124$
		Formula mass of sodium carbonate $Na_2CO_3 = 100$
		Mass of sodium carbonate in $200 \text{cm}^3 = \frac{1000}{1000}$
		But 106 g of Na ₂ CO ₃ produce 124g of CuCO ₃
		$\therefore \frac{5.3 \times 200}{1000}$ g of Na ₂ CO ₃ produce $\frac{5.3 \times 200}{1000} \times \frac{124}{106}$
- 22	D	
23	В	Moles of potassium hydroxide
		1000 cm contain 0.4 moles
		$30 \text{cm}^2 \text{ contain} \frac{1000}{1000} \text{ moles}$
		Moles of the acid
		2mole of KOH react with 1 mole of acid 0.4×30 1
		$\frac{0.4 \times 30}{1000}$ of KOH react with $\frac{0.4 \times 30}{1000} \times \frac{1}{2}$
		Molarity of the acid
		$15 \text{ cm}^3 \text{ contain} \frac{0.4 \times 30}{1000} \times \frac{1}{2} \text{ moles}$
		$1000 \text{ cm}^3 \text{ contain} \frac{0.4 \times 30}{0.4 \times 30} \times \frac{1}{2} \times \frac{1000}{1000} = \frac{0.4 \times 30}{0.4 \times 30}$
24	D	$\frac{1000}{1000} = \frac{2}{15} = \frac{2 \times 15}{2 \times 15}$
24		
	D	(2×27) g of aluminium produce (5×05.5) g of copper 2.5 a cf characterized as $3x 63.5 \times 2.5$

25	В	Moles of sodium carbonate
		1000cm ³ contain 0.05 moles
		$25 \text{cm}^3 \text{ contain} \frac{0.05 \times 25}{1000} \text{ moles}$
		Moles of the acid
		1mole of Na ₂ CO ₃ react with 2 moles of acid
		$\frac{0.05 \times 25}{100}$ of KOH react with $\frac{0.4 \times 30}{100} \times 2$
		1000 1000 1000 1000
		$\begin{array}{c} 1 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
		$20 \text{ cm}^3 \text{ contain} \xrightarrow{1000} x 2 \text{ moles}$
		$1000 \text{ cm}^3 \text{ contain} \frac{0.05 \times 25}{1000} \times 2 \times \frac{1000}{20} = \frac{0.05 \times 25 \times 2}{20}$
26	А	Moles of hydrochloric acid
		1000cm ³ contain 0.05 moles
		$8.0 \text{ cm}^3 \text{ contain} \frac{0.05 \times 8.0}{\text{moles}}$ moles
		$\frac{1000}{1000}$
		2 mole of HCl react with 1 mole of $Ca(HCO_2)_2$
		0.05×8.0 of VOH report with $0.05 \times 8.0 \times 1$
		$\frac{1000}{1000} \text{ of KOH feact with } \frac{1000}{1000} x \frac{1}{2}$
		Molarity of the Ca(HCO ₃) ₂
		25 cm ³ contain $\frac{0.03 \times 0.0}{1000} x \frac{1}{2}$ moles
		$1000 \text{ cm}^3 \text{ contain} \frac{0.05 \times 8.0}{1000} x \frac{1}{2} x \frac{1000}{27} = \frac{0.05 \times 8.0}{2} \text{ M}$
		Formula mass of Ca(HCO ₃) ₂ = $40 + 2(1 + 12 + 16 \times 3) = 162$
		$\therefore \text{ concentration of } Ca(HCO_2)_2 = \frac{0.05 \times 8.0}{r} r 162 a l^{-1}$
27	C	Example mass of $KI = 30 + 127 - 166 g$
21	C	Formula mass of PbI ₂ = $207 + 127 \times 2 = 461 \sigma$
		(166×2) g of KI produce 46 1g of PbI ₂
		(100 m 2) g of L produce $\frac{33.2 \times 461}{33.2 \times 461} = 46.1 g$
20	C	$\frac{55.2g \text{ or K1 will produce } -40.1g}{332} = 40.1g$
28	C	Formula mass of Ca(HCO ₃) ₂ = $40 + 2(1 + 12 + 16 \times 3) = 162g$
		Mas of C2(HCO ₂), in 1000 cm ³ - $\frac{1000 \times 6.48}{1000 \times 6.48}$ - 12.96 g
		$\frac{12.509}{500}$
		Molarity of Ca(HCO ₃) ₂ $\frac{concentration gt}{formula mass} = \frac{12.96}{162} 0.08M$
29	D	Mole of NaHSO ₄ in 200 cm ³ of $0.5M = \frac{0.5 \times 200}{1000} = 0.1M$
		Mole of NaCl in 250 cm ³ of $0.4M = \frac{0.4 \times 250}{0.4 \times 250} = 0.1M$
30	B	Moles of sodium carbonate
50	Б	1000cm ³ contain 0.05 moles
		20 cm^3 contain 0.05 moles
		20cm contain $\frac{1000}{1000}$ moles
		Moles of the acid
		1 more of Na ₂ CO ₃ react with 2 mores of acid 0.05×20 are as 0.05×20
		$\frac{1000}{1000}$ of KOH react with $\frac{1000 \times 20}{1000} \times 2$
		Molarity of the acid
		$10 \text{ cm}^3 \text{ contain} \frac{0.05 \ x \ 25}{1000} \ x \ 2 \text{ moles}$
		$1000 \text{ cm}^3 \text{ contain} \frac{0.05 \times 20}{0.05 \times 20} \times 2 \times \frac{1000}{0.05 \times 20 \times 2} = \frac{0.05 \times 20 \times 2}{0.05 \times 20 \times 2}$
		10000 m contain $\frac{1000}{1000}$ x 2 x $\frac{10}{10}$ $\frac{10}{10}$

31	А	Formula of $Fe_2O_3 = 56 \times 2 + 16 \times 3 = 160$
		160g of Fe ₂ O ₃ require (56 x 2)g of iron
		$0.8g \text{ of } \text{Fe}_2\text{O}_3 \text{ require } \frac{56 x 2 x 0.8}{160}$
		- 160
32	Α	Moles of nitric acid
		1000cm ³ contain 0.1 moles
		$50 \text{ cm}^3 \text{ contain} \frac{0.1 \times 50}{1000} 0.005 \text{ moles}$
		Mole of copper oxide that reacted $=\frac{0.005}{2} = 0.0025$ moles of CuO
		Formula mass of $Cuo = 63.5 + 16 = 79.5g$
		Mass of 0.0025mole of CuO = 0.0025 x 79.5 =0.2g
33	D	(2 x 24)g of Mg require (16 x 2)g of oxygen
		5g of Mg require $\frac{5 \times 32}{48}$
34	С	Formula mass of Na ₂ CO ₂ $10H_2O = 2 \times 23 + 12 + 16 \times 3 + 10(2 + 16) = 286g$
51	C	Mass of Na ₂ CO ₂ 10H ₂ O in 1000 cm ³ = $\frac{5.73 \times 1000}{1000}$ = 11.46
		$\frac{11.40}{500} = 11.40$
		Molarity = $\frac{concentration gr}{formula mass} = \frac{11.45}{286}$
35	С	Formula of $ZnCO_3 = 65 + 12 + 16 \times 3 = 125$
		Formula mass of $ZnO = 65 + 16 = 81g$
		125g of ZnCO ₃ produce 81g of ZnO
		2.5g of ZnCO ₃ produce $\frac{2.5 \times 61}{125} = 1.62$
36	(a)	Moles of NaOH
		1000cm ³ contain 0.1 moles
		$25.0 \text{ cm}^3 \text{ contain} \frac{0.1 \times 25.0}{1000} \text{ moles}$
		Moles of the HCl
		1 mole of NaOH react with 1 mole of HCl
		$\frac{0.1 \times 25.0}{1000}$ of NaOH react with $\frac{0.1 \times 25.0}{1000}$ mole of HCl
		Molarity of the HCl
		$20 \text{ cm}^3 \text{ contain} \frac{0.1 \times 25}{1000} \text{ moles}$
		1000
		1000 cm^3 contain $\frac{0.1 \times 25}{1000} \times \frac{1000}{1000} = \frac{0.1 \times 25.0}{1000} = 0.125 \text{ M}$
		$\frac{1000}{1000}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$
	(b)	Formula mass of $HCl = 1 + 35.5 = 36.5$
		Concentration in gl-1
		Imole weigh = $36.5g$
		\therefore 0.125 moles of HCl weigh 0.125 x 36.5 =4.5625
37	(a)	Moles of NaOH
57	(")	1000cm ³ contain 0.4 moles
		$30 \text{ cm}^3 \text{ contain} \frac{0.4 \times 30}{0.4 \times 30} = 0.012 \text{ moles}$
	(b)	Reaction equation
		3 NaOH(aq) + H ₃ PO ₄ (aq) \longrightarrow Na ₃ PO ₄ (aq) + 3H ₂ O(l)
		Moles of H ₃ PO ₄

		3moles of NaOH 1 mole of H ₃ PO ₄
		0.012 moles of NaOH react with $\frac{0.012 \times 1}{2} = 0.004$ moles
		40cm ³ contain 0.004 moles
		$1000 \text{ cm}^3 \text{ contain} \frac{0.004 \times 1000}{10} = 0.1M$
		40
38		Moles of NaOH
		1000cm ³ contain 0.2 moles
		$25 \text{ cm}^3 \text{ contain } \frac{0.2 \times 25}{1000} = 0.005 \text{ moles}$
		Reaction equation
		$2NaOH(aq) + H_2SO_4(aq) \longrightarrow Na_2SO_4(aq) + 2H_2O(l)$
		Moles of H_2SO_4
		2 moles of NaOH 1 mole of H_2SO_4
		$0.005 moles$ of NaOH react with $\frac{2}{2} = 0.0025 moles$
		$24.6 \text{ cm}^3 \text{ contain } 0.0025 \text{ moles}$
		$1000 \text{ cm}^3 \text{ contain} \frac{0.0023 \times 1000}{24.60} = 0.1M$
39		Moles of HCl
		1000 cm contain 0.8 moles
		$25 \text{cm}^3 \text{ contain} = 0.02 \text{ moles}$
		Reaction equation $2UCI(x,y) + NI_{x} CO_{y}(x,y) = 2NI_{x}CI(x,y) + U_{y}O(1) + CO_{y}(x)$
		$2\text{HCI}(aq) + \text{Na}_2\text{CO}_3(aq) \longrightarrow 2\text{NaCI}(aq) + \text{H}_2\text{O}(1) + \text{CO}_2(g)$
		2moles of HCl 1 mole of Na ₂ CO ₃
		0.02 moles of HCl react with $\frac{0.02 \times 1}{0.02 \times 1} = 0.01$ moles
		$20 \text{ cm}^3 \text{ contain } 0.01 \text{ moles}$
		$1000 \text{ cm}^3 \text{ contain} \frac{0.01 \times 1000}{1000} = 0.5M$
		Formula mass of Na ₂ CO ₂ = $2 \times 23 + 12 + 16 \times 3 = 106$
		mole of Na ₂ CO ₃ weigh $106g$
		0.5 moles weigh $106 \ge 0.5 = 53$ g
		\therefore the concentration of Na ₂ CO ₃ is 53gl ⁻¹
40	(a)	100cm ³ contain 0.106g
		$1000 \text{ cm}^3 \text{ contain} \frac{0.106 \times 1000}{1000} = 1.06 q$
		100 1009
	(b)	Formula mass of $Na_2CO_3 = 23 \times 2 + 12 + 16 \times 3 = 106$
		Molarity $=\frac{1.00}{106} = 0.001M$
	L	