OXIDATION AND REDUCTION

OXIDATION

Definition 1 (In terms of oxygen)	Definition 2 (In terms of hydrogen)	Definition 3 (In terms of electrons)
Oxidation is the addition of oxygen to a	Oxidation is the removal of hydrogen from	Oxidation is the loss of electrons from a
substance.	a substance.	substance.

Illustration of oxidation by Definition 1

$$2Cu_{(s)} + 0_{2(g)} \longrightarrow 2CuO_{(s)}$$

Questions

a) What was observed in the equation above?

The brown solid formed a black residue.

b) Explain your observation?

The brown copper metal was <u>oxidized</u> to copper (ii) oxide which is black in colour.

Illustration of oxidation by Definition 2

Questions

c) What was observed in the equation above?

A <u>yellow solid</u> was formed and a <u>white fuming gas</u> was evolved

d) Explain your observation?

Hydrogen sulphide was oxidized to sulphur due to the removal of hydrogen.

Illustration of oxidation by Definition 3

$$Na_{(s)}$$
 $Na^+_{(aq)}$ + \bar{e}

In this equation, sodium atom loses an electron to form sodium ion. By this, its said that sodium atoms have been oxidized to sodium ions.

REDUCTION

Definition 1 (In terms of oxygen)	Definition 2 (In terms of hydrogen)	Definition 3 (In terms of electrons)
Reduction is the removal of oxygen from a	Reduction is the addition of hydrogen to a	Reduction is the addition of electrons to a
substance.	substance.	substance.

Illustration of reduction by Definition 1

 $CuO_{(s)}$ + $H_{2(g)}$ \longrightarrow $2Cu_{(s)}$ + $H_2O_{(l)}$

Questions

e) What was observed in the equation above?

The <u>black solid</u> formed a <u>brown residue</u> and a <u>colorless liquid</u>.

f) Explain your observation?

The copper (ii) oxide was <u>reduced</u> to copper and hydrogen gas was <u>oxidized</u> to water.

Illustration of reduction by Definition 2

 $H_{2(g)}$ + $Cl_{2(g)}$ \longrightarrow $2HCl_{(g)}$

Questions

g) What was observed in the equation above?

The greenish-yellow gas formed white fuming gas.

h) Explain your observation?

Chlorine gas was <u>reduced</u> to hydrogen chloride by addition of hydrogen.

Illustration of reduction by Definition 3

$$Cl_{2(g)}$$
 + $2\bar{e}$ $Cl_{(aq)}$

In this equation, chlorine atoms gain electrons to form chloride ions. By this, its said that chlorine atoms have been reduced to chloride ions.

Oxidizing agents	Reducing agents
Oxidizing agents are electron acceptors.	Oxidizing agents are electron donors.
Elements which readily accept electrons in order to complete a	Elements which readily donate electrons in order to achieve a
full energy level will possess oxidation properties.	full energy level will possess reduction properties.
Elements on the extreme right of the periodic table are oxidizing	Elements on the extreme left of the periodic table are reducing
agents.	agents.
Oxidizing agents are found in Group VI and Group VII	Reducing agents are found in Group I and Group II
Oxidizing agents in Group VI are OXYGEN and SULPHUR	Reducing agents in Group I are SODIUM and POTASSIUM
Oxidizing agents in Group VII are FLOURINE and CHLORINE	Reducing agents in Group II are CALCIUM and MAGNESIUM

REDOX REACTIONS

Redox reactions are reactions in which oxidation and reduction occur simultaneously.

REDOX is a short form of two processes;

RED-	REDUCTION
OX-	OXIDATION

Consider the following equations

Equation 1	CuO _(s)	+	$H_{2(g)}$	2Cu _(s) +	$H_2O_{(1)}$
Equation 2	2Fe ²⁺ (aq)	+	$Cl_{2(g)}$	$2Fe^{3+}$ (aq)	+ 2Cl (aq)

In equation 1, copper (ii) oxide is <u>reduced</u> to copper and hydrogen is <u>oxidized</u> to water.

In equation 2, iron (ii) ions are <u>oxidized</u> to iron (iii) ions and chlorine gas is <u>reduced</u> to chloride ions.

DISPLACEMENT REACTIONS AS REDOX REACTIONS

Why displacement reactions are called redox reactions.

It's because in a displacement reaction, there is a transfer of electrons from the atoms of one substance to the ions in solution.

NOTE; the more electropositive elements (elements higher in activity series) can displace the less electropositive ones (elements lower in activity series)

	Powdered zinc was added to copper (ii) sulphate solution				
Question 1	What was observed?				
	The <u>blue solution</u> turned to <u>colourless</u> and a <u>brown solid</u> was formed.				
Question 2	Explain your observation?				
	Zinc loses electrons and dissolves into the solution. These electrons are gained by copper (ii) ions forming copper metal				
Question 3	Write equation(s) for the reaction(s)				
	$Zn_{(s)} \longrightarrow Zn^{2+}_{(aq)} + 2\bar{e}$ (OXIDATION)				
	$Cu^{2+}_{(aq)} + 2\bar{e} \longrightarrow Cu_{(s)}$ (REDUCTION)				
Question 4	Write the overall equation for the reaction.				
	$Zn_{(s)} + Cu^{2+}_{(aq)} \longrightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$				

	Iron filings were added to copper (ii) sulphate solution			
Question 1	What was observed?			
	The <u>blue solution</u> turned to <u>green</u> and a <u>brown solid</u> was formed.			
Question 2	Explain your observation? Iron filings lose electrons and dissolve into the solution. These electrons are gained by			
	copper (ii) ions forming copper metal			
Question 3	Write equation(s) for the reaction(s)			
	$Fe_{(s)} \longrightarrow Fe^{2+}_{(aq)} + 2e^{-}$ (OXIDATION)			
	$Cu^{2+}_{(aq)} + 2e \longrightarrow Cu_{(s)}$ (REDUCTION)			
Question 4	Write the overall equation for the reaction.			
	$Fe_{(s)} + Cu^{2+}_{(aq)} \longrightarrow Fe^{2+}_{(aq)} + Cu_{(s)}$			

A Copper foil was suspended in a solution of silver nitrate		
Question 1	What was observed?	
	The solution gradually turned to <u>blue</u> and a <u>grey metal</u> was formed	
Question 2	Explain your observation? Copper was <u>oxidized</u> to copper (ii) ions and silver ions were <u>reduced</u> to silver metal.	
Question 3	Write equation(s) for the reaction(s)	
	$Cu_{(s)} \longrightarrow Cu^{2+}_{(aq)} + 2\bar{e}$ (OXIDATION)	
	$Ag^{+}_{(aq)} + e^{-} \longrightarrow Ag_{(s)}$ (REDUCTION)	
Question 4	Write the overall equation for the reaction.	
	$Cu_{(s)} + 2Ag^{+}_{(aq)} \longrightarrow Cu^{2+}_{(aq)} + 2Ag_{(s)}$	

SOURCE	SPIRE HIGH SCHOOL – GAYAZA
DEPARTMENT	DEPARTMENT OF CHEMISTRY
TOPIC	OXIDATION AND REDUCTION (O' LEVEL)
WRITER	MULONDO SULAIMAN 0756 315 622