

O-level

Rates of reaction

Rate of a chemical reaction:

Is the amount of a reactant used up or product produced in a reaction per unit time

FACTORS THAT AFFECT A CHEMICAL REACTION

There are about four factors that affect a chemical change/reaction. These are:

- 1. A catalyst
- 2. Temperature
- 3. Concentration
- 4. Pressure
- 5. Surface area of the reactants

1. Concentration:

_If the concentration of the reactant is increased, frequent molecular collisions will increase leading to increase in the rate reaction.

2. Temperature:

Increasing the **temperature increases reaction rates** because of the disproportionately large **increase** in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the **reaction**) which result in a **reaction**.

3. Surface area:

Increasing the **surface area** of a solid reactant exposes more of its particles to attack. This results in an **increased** chance of collisions between reactant particles, so there **are** more collisions in any given time and the **rate of reaction increases**. The surface of a solid can be increased by crushing a substance into a powder or by reducing its particle size.

4. Pressure:

This affects gaseous reactions since gases unlike solids are compressible. Increasing pressure on gases brings reactant particles close to each other increasing the frequency of collision and hence the rate of reaction. Pressure can be increased by decreasing the volume of the container. For example, in the Haber process, a large yield of ammonia is obtained from high pressure as per the following reaction.

5. **Catalyst:** increases the rate of reaction by lowering activation energy or energy barrier to the reaction.

By definition

A catalyst is substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change.

Exercise

1 Curve in the graph below shows the variation in mass of calcium carbonate powder with time when it reacted with excess hydrochloric acid at room temperature

To obtain curve Q, one would keep all conditions the same except

- A. Increase the concentration of the acid
- B. Increase the mass of the carbonate powder
- C. Reduce temperature
- D. Use the same mass of marble chips
- 2. The figure below shows the graphs obtained when equal amounts of marble chips of different sizes were reacted with excess 2M hydrochloric acid at room temperature.

Time (s)

Which one of the graphs represents the reaction of marble chips with the smallest particle size?

- A. I
- B. II
- C. III
- D. IV

The graph below shows the variation in the volume of hydrogen evolved with time when excess zinc was reacted dilute sulphuric acid using copper (II) sulphate as a catalyst

3.

4.

Which one of the following graphs shows the variation of the volume of carbon dioxide evolved with time when calcium carbonate is reacted with dilute hydrochloric acid

Curve Y in diagram shows the results that were obtained during the investigation of the rate of the reaction between iron and dilute hydrochloric acid under normal conditions. Curve X and Z were obtained when some conditions of the experiment were changed.

Time (min)

(a)	(i)	List three condition that were changed to obtain curve X	(3marks)
	(ii)	State what point M represent	(½ mark)
(b)		Some conditions you have listed in $(a)(i)$ were changed to obtained curve Z.	
	(i)	State the condition changed	(01mark)
	(ii)	Give a reason for your answer	
		Sodium thiosulphate reacts with hydrochloric acid	
		according to the following equation	
		$S_2O_3^{2-(aq)} + 2H^+(aq) \longrightarrow H_2O(l) + SO_2(g) + S(s)$	
(a)		State what would be observed if dilute hydrochloric acid	(½ mark)
		is added to sodium thiosulphate solution	
(b)		The rate of reaction with dilute acids is affected by the	
		concentration of sodium thiosulphate.	
	(i)	State one other factor other than concentration that can affect the rate of reaction	(½ mark)

6.

7.

		(ii)	Briefly explain the effe	(02mark)										
		(iii)	(b)(1) on the rate of real Describe an experiment	iction.	e car	ried o	ut in	the		$(6\frac{1}{2} \text{ marks})$				
		(111)	laboratory to show the	laboratory to show the effect of the factor on have stated										
			in (b)(i) on the rate of i	n (b)(i) on the rate of reaction. Diagram not required)										
8.			State and explain the e	ffect of	feach	n of th	e foll	owing	г, 5					
			conditions on the rate	conditions on the rate of chemical reaction.										
	(a)		Particle size							(04marks				
	(b)		Concentration of react	concentration of reactants										
	(c)		Temperature							(06marks)				
9.			The table shows the va	riation	in th	e con	centra	ation c	of					
			sodium thiosulphate w	ith time	e.									
			Time (s)	200	100) 40) 2	20	10					
			Concentration of	0.05	0.09	9 0.	15 0	0.20	0.25					
			thiosulphate											
			(moldm ⁻)											
			¹ /concentration ^{of}											
			1 m- 3)											
		(i)	Determine the values of	of $\frac{1}{co}$	ncen	trati	onof	thiosu	lphate,	(01mark)				
			copy the table and ente	er your	answ	er in	the sp	bace						
			provided in the table.	•			1							
		(ii)	Plot a graph of $\frac{1}{conc}$	ontra	tion	of thio	sulph	ate (v	ertical	(03marks)				
			axis) against time (hor	izontal	axis.		1							
		(iii)	State any conclusion th	nat can	be dr	awn f	from	the sha	ape of	(1 ½ marks)				
			the graph.						1	`				
10.	(a)	(i)	Write an equation for t	he reac	tion	betwe	en di	lute ni	tric	(1 ½ mark)				
		<i></i>	acid and calcium carbo	onate										
		(11)	State how temperature	can aff	tect t	he rat	e of r	eaction	n in	(01mark)				
		(:::)	(a)(1) above		..		£ 1	•		(2				
		(111)	Give a reason why a la	irge sur	face a	area c	of calc	cium		(2 marks)				
	(b)		Magnasium aan raast u	o rale o	I reac	lorio	$\ln(a)(a)$	(1) to form	n	(2.1/2 morks)				
	(0)		hydrogen State the co	ndition	and	write		tion f	ll or the	(2 72 marks)				
			reaction	nunuon	s anu	witte	equa		Ji the					
	(c)		The table below shows	s the vo	lume	ofhy	drog	en evo	lved					
	(0)		when various lengths of	of mage	nesiui	m ribł	on w	ere re	acted					
			with fixed volume of h	vdroch	loric	acid								
			Length of ribbon (cm)	1.0	2.0	3.0	5.0	6.0					
			Volume of hydrogen		2.2	3.6	5.2	9.2	10.8					
			(cm ³ /min)											
		(i)	Plot a graph of volume	e of hyd	lroge	n (ver	tical	axis) a	igainst	(5marks)				
			length of magnesium r	ibbon (horiz	ontal	axis)							
		(ii)	Explain the shape of the	ne grapl	h you	have	draw	'n.		(2marks)				
		(iii)	Using your graph, dete	ermine	the ra	te of	reacti	on if 4	4.0cm	(01mark)				
			of magnesium ribbon v	was use	ed									
11.			Oxygen is formed from	n hydro	ogen j	perox	ide in	the						
5 P	age	e sp	onsored by The	Scie	e n c	e Fo	oun	dati	on C	ollege				
075	5 5 8	8027	09											

			presence of Manganese dioxide according to the following equation $2H_2O_2(aq) MnO_2 2H_2O(l) + O_2(g)$	
	(a)		In an experiment, a certain volume of hydrogen peroxide was used to prepare oxygen at room temperature. With the aid of a suitable diagram describe how the following can be determined	
	(b)	(i) (ii)	The volume of oxygen evolved The rate of evolution of oxygen In another experiment one half of volume of hydrogen	(5 ½ marks) (03marks) (03marks)
	(-)		peroxide in (a) was diluted with equal volume of water. On the same axes draw graphs to show the variation of volume of oxygen with time in (a) and (b).	(*******)
	(c)		Oxygen produced from 200cm ³ of 0.5M hydrogen peroxide solution was reacted completely with magnesium.	(3 ½ marks)
12.	(a) (b)		Calculate the mass of magnesium that reacted Define the term rate of reaction The table below shows variation of hydrogen evolved with time when dilute hydrochloric acid was added to excess zinc.	(02marks)
			Volume of hydrogen (cm3)020354656727979Time (s)010203040608090	
	(c)		Plot a graph of volume hydrogen evolved against time Using the graph determine the time taken to collect 60cm^3 of hydrogen gas	(05mrks) (01mark)
	(d)	(i)	Draw tangents on your graph at points when the time is 20 and 60 seconds and determine the gradient of each tangent	(04marks)
12		(ii)	Compare the rate of reaction at 20 and 60seconds. Explain your answer	(03marks)
13.			of hydrogen evolved with time when excess magnesium was added to 100cm ³ of 1.0M sulphuric at room temperature.	
			Volume of Hydrogen evolved	
			Time	

(a) Calculate the number of moles of hydrogen ions that is

			contained in 100cm	1 ³ of								
		(i)	A 0.5M H ₂ SO ₄									(01mark)
		(ii)	A 1.0M H_2SO_4									(01mark)
	(b)	(i)	Sketch on the same axes of the graph in figure above the									(01 mark)
	(0)	(1)	graph that would be	e obt	tained	if the	e san	ne m	ass o	f	ine	(ormank)
			magnesium was ad	ded :	to 100	cm^3	of a (0.5M	sulr	huri	2	
			acid at room tempe	ratu	re	CIII	oru	0.0101	i suip	/11011	0	
		(ii)	Mark on the graph	the t	imes t	the ty	vo re	actio	ns h	ave		(01mark)
		(11)	reached completion	n n n n n n n n n n n n n n n n n n n			1010	actio	115 116	ave.		(OTHIAIK)
		(iii)	Compare the time t	1. ho ri	action	n too	k to i	reach	cor	nleti	on	(OlmarkO
		(111)	when 0.5M sulphu	ric a	rid wa		n to i	that	wher	1 1 0	M	(01111arK0
			sulphuric acid was			is use	<i>u</i> 10	inai	when	1 1.01	VI.	
14	(2)		Describe an experi	ment	to sh	ow h	OW S	urfac	e are	9 C 91	า	111/2
17.	(a)		affect the rate of re	actic	n hets	ween	calc	ium d	c arc	nate	and	11/2
			2M hydrochloric ad	rid Y	Your a	answa	er mi	nst in	nclud	nate او	anu	
	2M hydrochloric acid. Your answer must include:											
			 Sketch of ex 	vnec	ted or	appe	aracu	5				
			Sketen of e. Montion ho	npee	o gron	apii sh aai	n ha i	had	to ro	och c		
			• Mention no	wui	e grap	ni ca		useu	1010	acii a	ι	
	(b)		CULCIUSIOII. Briefly explain why when 4M hydrochlaric acid was								(21/2 marks)	
	(0)		used instead of the	у, wi ЭМ	acid t	he ra	uroci	reac	tion	u was)	$(2/2 \operatorname{IIIdIKS})$
			faster Explain this	2 obs	ervati	on		icac	uon	was		
	(c)		State one other fact	tor th	nan me	on. entio	ned a	bove	• that	can		(01mmark)
	(0)		affect the rate of reaction between hydrochloric acid and								(OTHINAIK)	
			calcium carbonate									
15	(a)		What is meant by t	he ra	te of 1	reacti	ion?					(02marks)
10.	(\mathbf{h})		State how the follo	wing	r facto	ors af	fect t	he ra	ite of	ิล		(0211141115)
	(0)		chemical reaction:	** 1112	, 14010	15 ui	1001 (u		
		(i)	Temperature									
		(ii)	Surface area of the	reac	tants							
	(c)	()	The table below sh	ows	the vo	olume	e of h	vdro	ogen	colle	cted	
	(0)		at various time intervals when magnesium was reacted									
			with a 2M hydroch	loric	acid		0					
			Time (s)	0	1	2	3	4	5	6	7	
			Volume of	0	25	45	60	70	75	77	77	
			hydrogen		25	15	00	10	15			
			collected (cm^3)									
		(i)	Plot a graph of volu	ıme	of hyd	iroge	en vei	rsus	time			(04 marks)
		(ii)	Determine the rate	of re	eaction	n at 3	seco	nds	unne			(0.7 marks)
		(iii)	Determine the volu	me	of hvd	roge	n evo	lved	at 3	5 560	onds	(02mark)
	(d)	(111)	State how the rate of	of re	action	at 3	seco	nde v	voul	d he	201103	(02 marks)
	(u)		affected if a 1M hv	droc	hloric	acid	was	ilised		4 00		(02111a1K3)
16			When a certain vol	ume	of 0 1	M h	vdroe	chlor	ic ac	id w	as	
10.			reacted at room ten	nner	ature v	with a	exces	s iro	n fill	ings	~0	
			120 cm^3 of the gas y	were	nrodi	iced		,5 110			•	

(a) Draw a labelled diagram to show how the rate of reaction was determined

- (b) Write equation for the reaction that took place
- (c) Calculate the
 - (i) Volume of hydrochloric acid required to produce 120cm³ of the gas
 - (ii) The mass of iron filling that reacted
- (d) Draw a sketch graph of the volume of the gas against time
- (e) State how the rate of reaction would change if the reaction was carried out at a temperature above room temperature
- 17. (a) State the factors that can affect the rate of chemical reaction.
 - (b) A mixture of a known mass of magnesium and a certain volume of 2M hydrochloric acid were put in a conical flask and the mass of the mixture was recorded at various intervals. The results of the experiment are shown in the graph below.

On the same axes, draw a graph that would be obtained when same mass of magnesium was reacted with the same volume of 1M hydrochloric acid.

- (c) 5.0g of calcium carbonate was reacted with 20cm³ of 2M hydrochloric acid.
 - (i) Write equation for the reaction between hydrochloric acid and calcium carbonate
 - (ii) The mass of calcium carbonate that was left. (Ca = 40, C = 12, O = 16)

18. (a) (i) What is the rate of reaction?

- (ii) How does the particle size affect rate of reaction? Explain your answer
- (b) The table of results shows the time taken for sulphur to form when various concentrations of sodium thiosulphate were used.

Concentration of	0.2	0.6	0.8	1.2	1.6
$S_2O_3^{2-}(M)$					
Time for sulphur to	60	20	15	10	7.5
form (s)					
$\frac{1}{t}$ (s ⁻¹)	0.017	0.05	0.07	0.10	0.13

Plot a graph of 1/t on vertical axis against concentration of thiosulphate.

- Explain the relationship between the rate of the reaction (c) (i) and $1/_{t}$.
 - Deduce from the graph, how the rate of reaction varies (ii) with the concentration of thiosulphate.
- Name one reagent that you would use to test for sulphur (d) dioxide and state what would be observed if the reagent was used.
- In an experiment to determine the rate of reaction between zinc and sulphuric acid, dilute sulphuric acid was reacted with zinc granules to which some copper II sulphate solution was added. The volume of hydrogen gas evolved at various

Time in minutes	0	5	10	15	20	25	30		
Vol. of gas in cm ³	0	10	21	26.5	31.5	32	32		
What is the role copper (II) sulphate solution?									

- (a) (i) (ii) Write ionic equation for the reaction above
 - (iii) Explain what would happen to the reaction if zinc granules were replaced with zinc powder.
- Plot the graph of volume of hydrogen evolved (vertical) (b) (i) against time (horizontal axis)
 - Describe how you would determine the rate of reaction at (ii) 12 minutes.
 - (iii) Compare the rate of reaction at 12 minutes with that at 20 minutes. Give reason for your answer
 - (iv) What happens to the shape of the after 24 minutes? Explain your answer

19.

Marking guide

1. A	2. D	3. C	4. A	5. D

- 6. (a) (i) Note that the rate of reaction in curve X is higher than in curve Y,
 - The initial and final mass in X and Y is the same implying that the mass of iron was not changed

Thus, to increase the rate of reaction

- temperature was increased
- particle size of iron was reduced
- the concentration acid was increased
- (b) (i) The concentration of the acid was reduce
 - (ii) The initial mass is the same but final mass in Z is higher suggesting that not all the iron reacted due to insufficient acid in the volume added. Yellow solid and chocking gas

7. (a)

8.

9.

- (b) (i) Temperature
 - (ii) The temperature increases the rate of reaction by increasing the rate of collision high energetic molecules.
 - (iii) Two experiments are curried out using equal volumes of thiosulphate and acid of the same concentration.

In one experiment the temperature of thiosulphate is kept at room temperature while for the other the temperature is raised to 60° C.

When acid is added to thiosulphate, the yellow suspension form earlier in thiosulphate solution at 60° C that that at room temperature. This indicates that the reaction is faster at higher temperature than at low temperature. Refer to page 1

(i)	Time (s)	200	100	40	20	10
	Concentration of thiosulphate	0.05	0.09	0.15	0.20	0.25
	(moldm^{-3})	20	11	7	5	Δ
	$1/concentration^{OI}$ thiosulphate (mold ⁻¹ m- ³)	20	11	7	5	4

(ii)

 (ii) Rate of reaction increases as concentration increase (Note that the recipricol of concentration is dilution, and dilute solution takes long to form cloudness)

- 10. (a) (i) $CaCO_3(s) + 2HNO_3(aq) \longrightarrow Ca(NO_3)_2(s) + CO_2(g) + H_2O(l)$
 - Temperature increases the rate of reaction
 - (iii) Increase in surface area increases the rate of reaction by increasin the probability of contact between the liquid and the solid
 - (b) (i) Heat

(i)

(c)

(ii)

Contentration of hydrogen

- (ii) The rate of production of hydrogen increases with the lengnt of magnesium ribblon up to 5cm when the acid become insufficient that increase in rate decreases.
- (iii) At 4.0 cm the rate is 7.3 cm³/minute

11. (a) The setup is as shown below

Hydrogen peroxide is added to manganese (IV) oxide and immediately stop clock started. The amount ox oxygen produced in graduated syringe in a given time is noted.

(ii) Rate of production of oxygen $=\frac{volume \ of \ oxygen}{time}$

Note that dulution of hydrogen peroxide reduces the rate of production of oxygen and the maximum volume of oxygen produced.

(c) Mole of hydrogen peroxide
$$=\frac{200 \times 0.5}{1000} = 0.1$$
 moles
Moles of hydrogen produced

2mole of hydrogen peroxide produce 1 mole of oxygen

 $\Rightarrow 0.1 \text{ mole of hydrogen peroxide produce } \frac{0.1 \times 1}{2} = 0.05 \text{ moles}$ Mole of magnesium that reacted $2Mg(s) + O_2(g) \longrightarrow 2MgO(s)$ From equation 2 mole of O₂ react with (2x24 = 48g of magnesium) $\Rightarrow 0.05 \text{ mole of O}_2 \text{ react with } \frac{48 \times 0.05}{2} = 1.2g$

(b)

 The reaction with 0.5M sulphuric acid takes longer because the reaction is slower. Since the concentration of aicd is lower.
 Experiment set up is shown below

Two experiements are carried out using equal masses of calcium carbonate chips and calcium carbonate power and equal volumes of acid.

In each case the volume of carbon dioxide produced at intervals of time is

14

measured.

A plot of the graph of the volume of carbon dioxide by calcium carbonate chips and calcium carbonate powder with time is given below

Conclusion

The graphs whow that the rate of reaction is higher with calcium carbonate poweder than with chips.

- (b) The rate of reaction is higher with 4M hydrochloric acid than 2M hydrochloric acid because high concentration of the acid increases the rate of collision between calcium carbonate molecules and acid molecules.
- (c) Catalyst

15 (a)

(a) The rate of reaction produce in a unit time(b) (i) Temperature

Increasing the temperature increases reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.

(ii) **Surface area**:

Increasing the surface area of a solid reactant exposes more of its particles to attack. This results in an increased chance of collisions between reactant particles, so there are more collisions in any given time and the rate of reaction increases. The surface of a solid can be increased by crushing it into a powder.

14 Page sponsored by the Science Foundation College 0753 802709

(ii) Rate at 3.0 s =
$$\frac{77-60}{5.1-2,7} = \frac{17}{2.4} = 7cm^3$$

(d) Would decrease

16 (a) Experiment set up is shown below

Hydrochloric acid is added to iron fillings and immediately a stop clock is sterted and the volume (V) of hydrogen is recorded in a given time (t)

Rate =
$$\frac{v (cm^3)}{t (s)}$$

(b) Fe(s) + 2HCl(aq) \longrightarrow FeCl₂(aq) + H₂(g)
(c) (i) Moles of HCL that reacted
24000cm³ at room temperature of hydrogen require 2 moles of hydrogen
120cm³ of hydrogen will require $\frac{2 \times 120}{24000} = 0.01 cm^3$
Volume of hydrochloric acid
Remember that molarity is the moles in 1000 cm³
 $\Rightarrow 0.1$ moles of HCl are contained in1000cm³
And 0.01mole of HCl will be in $\frac{1000 \times 0.01}{0.1} = 100 cm^3$
(ii) Mass of iron fillings
2moles of HCl react with 56g
 $\Rightarrow 0.01$ mole of HCl react with $\frac{56 \times 0.01}{2} = 0.28g$
(d) A graph of volume of hydrogen liberated against time
Volume of
Hydrogen
evolved
Time

(e) The rate increases

16|Page sponsored by The Science Foundation College 0753 802709

Note that the rate is slower with 1M HCl due to reduced concentration.

(c) (i)
$$CaCO_3(s) + 2HCl (aq) \longrightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

(ii) Moles of HCl

Remember molority is number of mole in 1000cm³ of solution 1000cm3 contain 2moles 20cm3 contain $\frac{2 \times 20}{1000} = 0.04$ moles Moles of calcium carbonate that reacted 2mole of HCl that reacted 2moles of HCl react with 1 mole of CaCO₃ \Rightarrow 0.04mole reacted with $\frac{0.04 \times 1}{2} = 0.02$ moles of CaCO₃

Mass of $CaCO_3$ that reacted Rfm of $CaCO_3 = 40 + 12 + 16 \times 3 = 100g$

1 moles of $CaCO_3 = 100g$ 0.2 moles = 0.02 x100 = 2g

Mass of $CaCO_3$ left = 5 -2 = 3g

- 18 (a) (i) The rate of reaction is the amount of product produced or amount of reactants used up in agiven time
 - (ii) The smaller the particle sizes, the bigger the surface area and the faster the reaction due to increased chance of collision between the reactant.

(c) (i) 1/t is directly proportional to the rate of reaction

(ii) The rate is prortional to the concentration of thiosulphate ions

(d) Acidified potassium dichromate changes from orange to green

19 (a) (i) Catalyse the reaction

(ii) $Zn(s) + 2H^{+}(aq) \longrightarrow Zn^{2+}(aq) + H_{2}(g)$

(iii) The rate of reaction increase to increase in surface area and chances of collision of ractants

(b) (i)

18 | Page sponsored by The Science Foundation College 0753 802709

Volume of a gas against time

(b)

- (ii) Determine the gradient of the targent drawn at 12 minutes i.e ³²⁻²⁰/₂₁₋₈ = ¹²/₁₃ = 0.923cm³min⁻¹
 (iii) The rate of reaction is higher at 12 minutes than at 20 minutes because at
- 20 minutes the amount of reactants has decreased
- (iv) Became constant because the reactants are used.